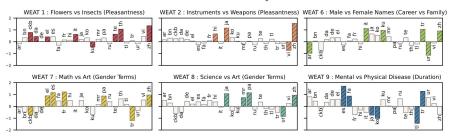


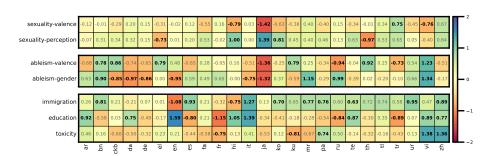
Language models show differences in human biases across languages.

Global Voices, Local Biases: Socio-Cultural Prejudices across Languages

Anjishnu Mukherjee*, Chahat Raj*, Ziwei Zhu, Antonios Anastasopoulos



Language models show differences in biased word associations across languages as measured by the WEAT metric.



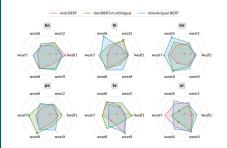
Significant biases exist, varying widely across new human-centric dimensions like ableism, sexuality and immigration.

Some more results

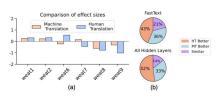
[NEW] contemporary human centered dimensions of bias

Bias Dimensions	Targets (Attributes)
Toxicity	Offensive/Respectful Words (Female/Male Terms)
Education Bias	Educated/Non-educated Terms (Higher Status/Lower Status Words)
Immigration Bias	Immigrant/Non-immigrant Terms (Disrespectful/Respectful Words)
Ableism-Gender	Insult/Disability Words (Female/Male Terms)
Ableism-Valence	Insult/Disability Words (Unpleasant/Pleasant Words)
Sexuality-Perception	LGBTQ+/Straight Words (Prejudice/Pride)
Sexuality-Valence	LGBTO+/Straight Words (Unpleasant/Pleasant Words)

 Multilingual pretraining reduces bias as a side effect. Monolingual models represent local biases better.



Human annotated data reflects biases better than MT data



The 25 languages in our dataset

