Continuous Collision Detection Algorithm in CollDet

Anjishnu Mukherjee

August 7, 2021

Question Given 2 rigid objects moving independently, determine an accurate time of collision between them.

Answer For the simplest scenario, we consider 2 spheres, one of which is always stationary. The other sphere can be either *rotated* or *translated* in any arbitrary direction. Consider t_0 to be an instant where they are not colliding and t_1 to be the next instant where they are colliding, where $t_1 = t_0 + 1$. The exact time of collision t_{coll} will lie somewhere inbetween t_0 and t_1 , i.e. $t_0 < t_{coll} < t_1$. m12 is a 4x4 matrix which contains the translation and rotation vectors of the moving object. A collision will not be detected when m12 becomes zero. m12_{ti} is the matrix at the time t_i . We only have the matrix available for t_0 and t_1 , so we need to extrapolate for the fractional instants between those 2 instants. For example, we will halve the values in the matrix, to find an extrapolation for time $t_{0.5}$ and so on.

The algorithm will start at t_1 where we know collision has already occured. Then it will calculate the state at $t_{0.5}$ by extrapolating. If collision occurs at $t_{0.5}$, we only need to search between t_0 and $t_{0.5}$, because at any time between 0.5 and 1, collision is now known to occur. So, effectively the search space for the time is now halved and we can treat $t_{0.5}$ as our *effective* t_1 now and repeat the same process as long as collision occurs at the *effective* $t_{0.5}$.


```
calculateTime(data, threshold, N)
```

```
Input: data is information about the frame at t<sub>1</sub>.
Input: threshold is the minimum allowed time difference between
   two extrapolated inbetween frames.
Input: N is the max number of times to be iterated to compute
   inbetween frames.
Output: Approximate time of collision.
t<sub>0</sub> = 0
```

```
t_{1} = 1
Iterate for N times

if (t_{1} - t_{0} < threshold)

break

var = checkInbetween(data, \frac{(t_{1} - t_{0})}{2})

if (var)

t_{1} = \frac{(t_{1} - t_{0})}{2}

else

t_{0} = \frac{(t_{1} - t_{0})}{2}

time = \frac{(t_{0} + 1)}{2}

return time
```