Continuous Collision Detection Algorithm in CollDet

Anjishnu Mukherjee

August 7, 2021

Question Given 2 rigid objects moving independently, determine an accurate time of collision between them.

Answer For the simplest scenario, we consider 2 spheres, one of which is always stationary. The other sphere can be either rotated or translated in any arbitrary direction. Consider t_{0} to be an instant where they are not colliding and t_{1} to be the next instant where they are colliding, where $t_{1}=t_{0}+1$. The exact time of collision $t_{\text {coll }}$ will lie somewhere inbetween t_{0} and t_{1}, i.e $t_{0}<t_{\text {coll }}<t_{1}$. m12 is a 4 x 4 matrix which contains the translation and rotation vectors of the moving object. A collision will not be detected when $m 12$ becomes zero. $m 12_{t \mathrm{i}}$ is the matrix at the time t_{i}. We only have the matrix available for t_{0} and t_{1}, so we need to extrapolate for the fractional instants between those 2 instants. For example, we will halve the values in the matrix, to find an extrapolation for time $\mathrm{t}_{0.5}$ and so on.

The algorithm will start at t_{1} where we know collision has already occured. Then it will calculate the state at $t_{0.5}$ by extrapolating. If collision occurs at $t_{0.5}$, we only need to search between t_{0} and $t_{0.5}$, because at any time between 0.5 and 1 , collision is now known to occur. So, effectively the search space for the time is now halved and we can treat $\mathrm{t}_{0.5}$ as our effective t_{1} now and repeat the same process as long as collision occurs at the effective $t_{0.5}$.

Figure 1: The two spheres just about to collide at $\mathrm{t}_{0}=0$.

Figure 2: The two spheres just colliding at $\mathrm{t}_{1}=1$.


```
checkInbetween(data, h)
    Input: data is information about the frame at t }\mp@subsup{\textrm{t}}{1}{}\mathrm{ .
    Input: h is a heuristic factor.
    Output: a bool which is true if collision has occurred.
    Generate the inbetween state by applying h to data
    result = check if collision occurs at the inbetween state
    return result
calculateTime(data, threshold, N)
    Input: data is information about the frame at t }\mp@subsup{\textrm{t}}{1}{}\mathrm{ .
    Input: threshold is the minimum allowed time difference between
    two extrapolated inbetween frames.
    Input: N is the max number of times to be iterated to compute
        inbetween frames.
    Output: Approximate time of collision.
    to = 0
    t
    Iterate for N times
    if ( }\mp@subsup{t}{1}{}-\mp@subsup{t}{0}{}<threshold
        break
    var = checkInbetween(data, (t, (t - to)
    if (var)
        t
    else
        to = (t\mp@subsup{t}{1}{}-\mp@subsup{t}{0}{\prime}
    time = \frac{(t0 + +1)}{2}
    return time
```

